
Unclassified AD-A239 517
SECURITY CLASSIFICATION OF THIS PAGE =4-i lii '40*411111 iI

REPOR) C I 6 TATIO 11111 11ii1lii111ii11I11i1ioI704i018

la REPORT SECURITY CLASSIFICATLJ .. o , , ,. .

Unclassified .LI a I None
2a SECURITY CLASSIFICATION AUTH 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION/ DOWNGRA DRW'CH E DUC Approved for public release;
distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) j 5 MONITORING ORGANIZATION REPORT NUMBER(S)

Technical Report No. 4

6a NAME OF PERFORMING ORGANIZATION " 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable) Cognitive Science Program

University of Pittsburgh Office of Naval Research (Code 442CS)
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

3939 O'Hara Street 800 North Quincy Street
Pittsburgh, PA 15260 Arlington, VA 22217

8a NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

I N00014-K-85-0664
8c ADDRESS(City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

61153N RR04206 RR04206-0(702-13

11 TITLE (Include Security Classification)

A Tale of Two Settings: The Lab and the Classroom

12 PERSONAL AUTHOR(S)

Janet W. Schofield
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Technical FROM 1/91 TO 8/9 1 1991 August 8 46

16 SUPPLEMENTARY NOTATION

None

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP classroom social behavior, teachers' roles, peer
05 05 helping, motivation, computer programming, computer

science classes

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Computer science students were observed in the classrooms of five different teachers
in an intensive two year qualitative study. Observations and interviews led to the
conclusion that students reacted very differently to the time they spent in the
computer lab working on writing programs and tne time t ey spent in the classroom
where they learned about computers and programming through teacher-led lectures.
Specifically, they enjoyed the lab more and were much more highly motivated to
work in that setting. Analysis of the social processes in these two contrasting
settings suggests that students' increased motivation in the lab was the result
of a complex set of factors including (a) a shift in their relation to the teacher,
(b) a concomitant shift in their relationship with peers, and (c) a shift in their

relationship to the work.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURIT" CLASSIFICATION
19 UNCLASSIFIEDiUNLIMITED [] SAME AS RPT m DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Dr. Susan Chipman 202-696-4318 ONR 442CS
00 Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

91-08018 S/N

A Tale of Two Settings: The Lab and the Classroom

Janet W. Schofield
Learning Research and Development Center

University of Pittsburgh
Pittsburgh, PA 15260

August 1991

Technical Report No. 4

This research was sponsored by the Cognitive Science Program, Cognitive
and Neural Sciences Division, Office of Naval Research, under Contract
No. N00014-K-85-0664, Contract Authority Identification Number NR 702-
013.

Reproduction in whole or part is permitted for any purpose of the United
States Government.

Approved for public release; distribution unlimited.

2

The past decade has seen an incredibly rapid proliferation of

microcomputers in both elementary and secondary schools. For example,

between 1981 and 1984 the number of schools with microcomputers more than

tripled (Quality Education Data, 1984) . By 1985 almost all secondary

schools and five-sixths of all elementary schools in the U.S. had at

least some computers for use in instruction (Becker, 1986) and the trend

toward the continuing acquisition of computers has continued. Current

estimates are that more than two billion dollars have been spent to

provide schools in the U.S. with computer technology in a period when

school systems are under heavy pressure to spend their limited resources

on numerous other things, including increased salaries for teachers

(Buckley, 1988).

Although the remarkable rapidity with which microcomputers are being

placed in schools is obvious, the impact of this change on teachers and

students is not. In fact, our knowledge of the way in which this chanige

influences classroom structure and functioning is extremely limited

(Sheingold, Kane, & Endreweit, 1983; Sheingold, Martin, & Endreweit,

1987) and some studies suggest that the impact of educational software

can be quite different from that which its developers intended (Hativa,

Swisa, & Lesgold, 1989). Thus we decided to conduct an intensive

qualitative study examining a wide variety of computer usage in a single

school. Such an approach allows exploration of the extent to which

different kinds of computer usage have similar or different effects as

well as analysis of what the impact of any particular use may be.

The core of this study is an examination of the impact of one

unusual but potentially very important usage of microcomputers -- their

utilization as intelligent tutors -- on classroom structure and

functioning in an urban school with a diverse student body. This research

ip q
/

3

has been reported elsewhere (Schofield, Evans-Rhodes, & Huber, 1989;

1990). However, we also closely examined computer usage in almost all

other sites in the school in which computers were used regularly for

instruction. The purpose of this was two fold -- to learn about how these

very different kinds of computer applications effected classroom

processes and to shed light on the question of the extent to which these

effects were similar to or different from those of the artificially

intelligent tutor.

The part of the project reported here closely examines social

processes in computer science classes. This report focuses on a

phenomenon which is in some ways parallel to one occurring in the GPTutor

classes -- in both cases there was a marked increase in student interest

and motivation when students were working on their computers compared to

when they were not. The goal of this report is to discuss why this change

occurred in the computer science lab. Although some reference is made to

the findings on the impact of the GPTutor, a full analysis of the

similarities and differences of the two situations is not the goal of

this report. Rather I shall lay the groundwork for such a comparison at

a later point by presenting a fairly detailed look at the computer

science classes themselves. Before proceeding to this, however, I will

briefly discuss the research methods used in this study.

Research Methods

The major methods of data-gathering employed in this study were

intensive and extensive classroom observation and repeated extended

interviews with students and teachers. Classroom observers used the "full

field note" method of data collection (Olson, 1976) which involves taking

extensive handwritten notes during the events being observed. Shortly

thereafter, these notes are dictated into a tape recorder and then

4

transcribed. Observers made the field notes as factual and as concretely

descriptive as possible to help avoid unwarranted inferences.

One clear problem with the use of such notes as a data base is what

Smith and Geoffrey (1968) have termed the "two-realities problem" -- the

fact that the notes as recorded cannot possibly include literally

everything that has transpired. Hence, a source of potential bias is the

possibility of selective recording of certain types of events. Although

this problem is impossible to surmount completely in qualitative

observation, there are some steps that can be taken to minimize its

negative effect. For example, we found it useful to have two researchers

observe a single setting both simultaneously and at different times.

Discussion of differences between the two observers' notes helped to

point out individual biases and preconceptions. Another technique useful

in reducing the effect of such biases is actively to seek out data that

undercut one's developing assessment of a situation. These techniques

plus a number of others discussed in standard texts on qualitative

research in educational settings (Bogdan & Biklen, 1982; Goetz &

LeCompte, 1984) were employed to reduce the "two realities problem."

Fuller discussion of methodological details can be found in Schofield

(1985).

As mentioned previously, virtually all kinds of classes in which

computers were used in instruction were observed during both years of the

study, resulting in a very large data base gathered during almost 500

hours of classroom observation. With the exception of the classes using

the GPTutor and selected comparison and control classes, the computer

science classes received more intensive observation than any other single

type of class. Specifically, we made observations weekly for two years

in computer science classrooms at Whitmore. Mr. Brice, who taught by far

5

the largest number of computer science classes was observed most heavily.

However, observations, generally weekly, were also made in the classes

of four other computer science teachers -- Ms. Brown, Mr. Colgate, Mr.

Davidson, and Mr. Deck.

Observers, no matter how omnipresent or insightful, are at a great

disadvantage if they do not test their emerging ideas through direct

inquiry with those whom they are observing. Because interviews can be so

useful in providing the participant's perspectives on events, both formal

and informal interviews were the second major data-gathering technique

utilized in the research. The computer science teachers were interviewed

both formally and informally. A randomly selected group of computer

science students (N = 36) were also interviewed. (This constituted over

85% of the students asked to be in the sample.) These 40 minute

interviews were semi-structured, consisting almost exclusively of open-

ended questions. In constructing and conducting all interviews strong

efforts were made to procure valid and unbiased data. For example,

questions were posed in a balanced manner so that leading questions were

avoided, students were assured that their teachers would not have access

to any of their responses, and the like. All formal interviews of both

teachers and students were taped and transcribed.

Data Analysis

Briefly describing data analysis procedures in qualitative research

is extremely difficult since the process is so complex and iterative. To

summarize, observational notes were coded as described in sources like

Miles and Huberman (1984) and Strauss (1987) . This involves carefully

reviewing field notes as they are collected, creating coding categories

of various types, developing and refining coding systems, writing working

memos, and then searching for ways to refute or enrich the ideas

6

developing from the preceding process. Interviews were analyzed using

traditional content analysis procedures.

Three general principles guided both the data-gathering and the data

analysis phases of the research. First, a concerted effort was made to

be as rigorous and systematic as possible. For example, sampling

techniques were employed where appropriate; trained coders coded open-

ended interviews using reliable systems developed for this research;

field notes were carefully indexed so that all notes relevant to a given

topic could be examined, etc.

Second, we Ltok very seriously the importance of triangulating the

data (Webb, Campbell, Schwartz, & Sechrest, 1966). That is, great care

was taken to gather many different types of information bearing on the

same issue, to minimize the potential problems with each data source, and

to be sensitive in analyzing and interpreting the data to biases which

:ould not be completely eliminated.

The third general principle which we took very seriously was that

data analysis should be an on-going a:.. iterative process. As the field

notes and other data accumulated, they were indexed, read, and reread.

Informal working memos were written, and data relevant to ideas emerging

from the early stages of analysis were actively sought in planned and

systematic ways.

Findings

Students enrolled in computer science at Whitmore were generally

enthusiastic about it. For example, when asked whether or not they were

glad they were taking the course over 90% of the students interviewed

replied affirmatively, and most were quite enthusiastic. Yet observation

if these classes and more differentiated questions about reactions to the

courses revealed that computer science courses were conducted in two very

7

different kinds of settings, the classroom and the computer lab, and that

students' attitudes toward learning in these two different settings

varied dramatically. This report briefly describes the way in which

computer science courses were organized at Whitmore. Then, it documents

the students' differential reaction to the two different class settings

and explores why students' reactions to the two complementary parts of

the course varied so radically. It concludes that the utilization of

computers in the lab led to often inadvertent changes in the way class

was conducted which were highly motivating to students.

The Classroom and the Laboratory

The facilities for teaching computer science at Whitmore consisted

of a regular-sized classroom and a similar adjourning room in which the

computers and printers were located. The classroom was equipped, as were

most other classrooms at Whitmore, with a blackboard across the front

wall, a teacher's desk in front of the blackboard, and rows of chairs

made with writing arms attached for students. Most of the top half of the

wall separating the class and the room housing the computers, which was

frequently referred to as "the lab," was made of glass to allow visual

contact from one room to the other. A door through this wall allowed easy

movement from one room to the other. Although the lab had blackboards on

the front wall as well as one side wall, there was no special desk for

the teacher. The computers were arrayed on four parallel rows of tables,

one against the wall separating the classroom and the lab, two back-to-

back rows down the middle of the room, and one final row abutting the

wall farthest from the classroom. One chair was placed near each computer

and the computer tables were large enough so that students had space for

books or papers. In all but the largest classes, there were more

computers than students. Although there was a door directly connecting

8

this room to the hallway, it was rarely used since students exited

through the classroom.

All of the five computer science teachers observed at Whitmore made

use of both rooms, although they differed markedly, as will be discussed

later, in the proportion of time spent in these two locations. Not

surprisingly, rather different kinds of activities were carried out in

the two settings. Even more importantly, the social context of learning

varied dramatically in the two settings. As indicated earlier, the

students had very different reactions to the two different milieus and

the reasons for this are the main focus of this report.

The classroom was used for five major purposes. First, teachers

lectured students about topics such as the history of computers, the past

and current uses of computers, and the various kinds of programming

languages and their uses. Second, class time was sometimes used simply

for reading. Students were not allowed to take their computer science

textbooks home with them. (I was told this policy had been adopted

because the $35 books were too expensive to have one for each of the

students in the three or four sections of computer science taught each

year.) Thus, to the extent that a teacher wanted students to use the

textbooks at all it was necessary to do so during school time. Third, the

classroom was the location in which tests and quizzes were administered.

These tests often focused on the material presented in the lectures

and/or the book. Fourth, teachers provided students with specific

information about the programming language they were studying, BASIC in

Computer Science 1 and PASCAL in Computer Science 2. So, for example, the

first year students learned about READ statements in BASIC. This kind of

information was generally presented in relatively small chunks

immediately before students received an assignment utilizing it in a

9

program. Fifth, students were sometimes instructed to write programs

they would later try out on the computers in the laboratory. With the

exception of work on constructing programs, these kinds of activities

were virtually never conducted in the room housing the computers.

In the classroom, the teacher's approach was similar to that

traditionally found in academic classes at Whitmore. Thus, lectures were

the primary vehicle of instruction. In addition, the teachers often posed

questions and then selected the students who were allowed or required to

try to supply the answers. The approved way to learn in such situations

was to attend closely to the teacher and be responsive to the teacher's

directions about taking notes, supplying answers, and the like.

In contrast to the classroom, the lab was used for working with the

computers rather than learning about them. Typically the students' task

in the lab was to create, debug, improve, and elaborate programs.

Students generally sat in front of their computers working on a

programming project assigned by the teacher. Different teachers varied

somewhat in the programming tasks assigned. However, in the very

beginning of the year it was common for teachers to have students write

programs to perform fairly simple mathematical calculations, such as

converting Fahrenheit temperatures to centigrade or computing payrolls.

Quite soon students progressed to writing somewhat more complicated

programs incorporating a greater variety of commands. They frequently had

time periods of a week or more to complete these tasks. It was common for

teachers to require that these programs have certain characteristics

which demonstrated competence with specific skills, but to leave the

precise nature of the program up to each student. So, for example, the

teacher might tell students to do a program incorporating loops but leave

the function the program performed up to the students.

10

In the computer lab teachers rarely tried to instruct the class as

a whole. Just as the teachers of students using the GPTutors circulated

and dealt with student's problems individually (Schofield, Evans-Rhodes,

& Huber, 1989; 1990), so too the computer science teachers went from

student to student in the lab as the need arose. This occurred quite

spontaneously since different students had problems with different parts

of their programs. Thus it would have been not only unnecessary but also

cumbersome and inefficient to try to insure that every student listened

to the teacher's interactions with all other students.

Students' Preference For the Lab

Students' strong preference for working with the computers in the

laboratory rather than learning about them was obvious in their everyday

behavior. For example, students would frequently ask the teacher if they

could go to the lab and made negative comments if told that the class

would not be going there. Requests to stay in the classroom to work were

extremely rare. The students' clear preference for the lab is illustrated

in the following field notes:

He (a substitute teacher named Mr. Wilborn) says, "Who wants to

go to the lab?" Hands shoot up around the classroom. Almost

all of the students have raised their hands. A couple of cries

like "Yeah!" and "Let's go" emanate from the back of the room.

The teacher says, "All right. Let's get started." The students

literally surge out of their seats into the lab Within

one minute they -re all seated in the lab with the computers

on.

This same preference was evident in the interviews. When asked whether

they preferred to spend their time in the computer science lab or the

classroom over 80% of the students interviewed in both computer science

1i

1 and 2 classes stated a clear preference for the lab. Not a single

student reported preferring the classroom. Comments like the following

were common:

I: Do students act differently in the classroom and the lab?

Tim: They're bored in the classroom. They love it in the lab.

Consistent with their obvious preference for the lab, students often

evidenced an enthusiasm for and interest in their work in the lab rarely

apparent in the classroom. Thus, for example, it was common for students

to put their heads down on their desks in the classroom to rest whereas

such behavior was extremely rare in the lab. In interviews they

frequently made spontaneous distinctions about their reactions to the two

settings, as is evident below:

Interviewer: Can you tell me how computer science is different

from your other classes?

Renata: There's no class I'd rather be in . . . I could stay

all day, as long as we're in the lab.

Mr. Brice noted, interestingly, that students known as troublemakers by

teachers in other classes were not problems in computer science,

especially in the lab. 'Their personalities change," he asserted.

Of course the fact that the students preferred the lab to the

classroom is not in and of itself evidence that the lab is necessarily

a better environment for learning. It is certainly possible to learn

without enjoying the process and to enjoy oneself without learning. Thus

my goal here is not to argue that computer science should be taught

exclusively in a laboratory setting just because students enjoyed it

more. Rather it is to examine why the laboratory was, relatively

speaking, so attractive to students and what the implications of the

diiferences in the settings were for students' involvement with and

12

attitude toward their work. I will argue that the students' preference

for the lab was not just a result of a preference for programming over

learning about computers or the other activities conductel in the

classroom, although that is undoubtedly a part of the explanation.

Rather, the two different milieus created a different context for

learning. Specifically, the students' relationship with their teacher

changed as did their relationships with their peers as they moved from

one setting to another. In addition, the relation between the students

and their work underwent a major shift. I will argue that most of these

changes had a very positive effect on students' motivation. Lessons drawn

from this analysis could well be applied to making classrooms a more

stimulating and attractive environment -- a goal worthy of consideration

in Whitmore and many other schools in which the drop-out rate is of

serious concern and teachers often bemoan students' lackadaisical

approach to their work.

The Basis for Students' Preference for the Lab

A changed relationshi D with the teacher. Students' relation to the

teacher changed as they moved from the classroom to the lab. The shift

in their relationship paralleled the change in teacher-student

relationships when geometry students shifted from whole class instruction

to work on the GPTutor (Schofield, Evans-Rhodes, & Huber, 1989; 1990).

Specifically, in the computer lab the teachers functioned less as expert

authority figures and more as skilled collaborators or coaches than they

had previously. Students often remarked on this change. For example, when

asked a very general question about how computer science classes were

different from their other classes over two-thirds of the students in

both computer science 1 and computer scieice 2 mentioned that their

relation with their teacher was different, most commonly describing it

13

as less of an authority relationship or as more friendly. As one student

put it, responding to a question about whether his relation with his

computer science teacher was different from his relationship with other

teachers.

He don't treat us like were students and he's the teacher

Most teachers think "I'm the teacher, you have to listen to

me." Sometimes that irks people because they try to tell you

how to do everything and some people don't like to be bossed

around.

A large number of the students also characterized computer science

teachers as more helpful than other teachers, echoing the observations

of the student in the GPTutor classes quoted in an earlier technical

report (Schofield, Evans-Rhodes, & Huber, 1989) who said of his teacher,

"He doesn't teach us any more. He just helps us." As one computer science

student put it:

Usually he's helping people. Whereas most teachers stand up and

talk at us, he comes around and actually sits down with you and

tries to help you with your program, like individual help as

much as he can. Most classes the teacher stands there and talks

to you and you do your work and you hand it in and they give it

back to you and that's it.

This shift occurred for many of the same reasons it did when the GPTutors

were in use and the geometry students experienced a similar shift from

lecture based whole class instruction to more individualized interactions

with the teacher. As indicated earlier, a lecture format focuses

attention on the teacher's superior knowledge since the lecture generally

consists of information the teacher already knows that students are

supposed to learn. Teachers exert a great deal of control over the topics

14

to be covered in lectures and, not surprisingly, tend to emphasize things

they know a lot about and avoid areas in which their knowledge is less

complete. Thus, in the classroom the teacher can generally provide a

consistent display of knowledge superior to that of the students and

sufficient to the task at hand. This was not possible to such an extent

in the lab for reasons to be discussed shortly. In addition, since

questions posed by the teacher during lectures generally concern specific

facts, such as "What does the word binary mean?" or "What does the

acronym ASCII stand for?", teachers were continually in the position of

telling students whether they were right or wrong. Tests constituted yet

another occasion in which the teacher's authority as arbiter of what is

true was reinforced in the classroom.

Because the class constitutes an audience whose attention the

teacher needs to direct and retain in order to achieve his or her goals

during a lecture, the threat of distraction or disruption is a serious

one. Thus rules against speaking without permission or moving out of

one's seat are promulgated. Even the posing of too many unprompted

questions by students may be discouraged if it interrupts the flow of the

material planned by the teacher. Formal mechanisms for signaling a

student's desire to speak, such as the raising of one's hand, allow the

teacher to accommodate students' queries and comments without disrupting

the on-going sequence of teacher-led activity. All in all, whole class

instruction through lecturing creates a situation in which the teacher

needs to maintain quite strict control over students' behavior. Attempts

to achieve this control often involve threats of disciplinary action or

grade reduction. Thus the authority that the teacher has solely by virtue

of his or her position as teacher is often made quite salient.

15

The situation in the lab was quite different. There, the students'

attention was not typically directed toward a teacher standing at the

front of the room supplying them with information they were expected to

learn. Rather, the student's task was to create working programs using

whatever cesources were available, including their own, their peers', and

their teacher's knowledge, and programming manuals located in the room.

Students worked on their programs as individuals, requesting the

teacher's assistance when they felt they needed it.

In the lab teacher-student interactions were less likely to be

authority-initiated demands for attention or information than in the

classroom and more likely to be student-initiated requests for

assistance. There it was relatively uncommon for the teachers to approach

students and offer unsolicited advice. Rather, the need for assistance

was frequently so great relative to the time the teacher had available

that the teachers were kept busy responding to student initiated requests

for help. When teachers had a temporary respite they tended to take care

of paper work, work on their own programs, or even play computer games

rather than to circulate offering unsolicited help. Computer science 2

classes were much smaller than the introductory course, generally

consisting of fewer than a dozen students rather than one and a half or

two dozen students. However, the teacher in charge of them, Mr. Brice,

acted much as he and the other teachers did in computer science 1, partly

because he felt that advanced students should be encouraged to work

independently and partly because he enjoyed improving his programming

skills by working on difficult problems.

In the lab even very knowledgeable teachers were often presented

with problems which they had to think about. In fact, teachers could

commonly be observed consulting programming manuals for information or

16

struggling to figure out how to solve a problem, behaviors which were

much less common in the classroom. Teachers could decide what programs

to have students work on in the lab in a way which reflected their own

areas of expertise, just as they were free in the class to emphasize the

topics with which they were most familiar. For example, teachers who had

more experience with graphics than othE assigned more graphics

programs. However, many students were sufficiently interested in the work

that they went beyond the assignment's minimum requirements in ways which

were not always easily predicted. in addition, there were a few students,

generally white boys, for whom computers were a hobby of great personal

interest. These students entered the computer science courses with a

great deal of programming experience and were highly motivated to create

rather elaborate programs, well beyond what the course required. Thus,

it was not uncommon for students to ask questions or present programming

problems which constituted a real challenge to their teachers. All this

combined to create a rather different image for the teacher in the lab

than in the classroom. Rather than being seen as a repository of an

endless store of facts the teacher was seen as a sometimes fallable

individual trying to apply and extend his or her knowledge, much as the

students were.

In the lab students also had a very different way of judging the

quality of their work which was much less dependent on the teacher's

authority than it was typically in the classroom. Specifically, they

could try their programs out and ee if they functioned as they were

intended to. The fact that they did so was independent confirmation that

the programs worked. Their failure to do so was an objective indicator

of the program's deficiencies. This tended to undercut the authority of

the teacher as the final arbiter of "right" and "wrong" and "good" and

17

"bad." Students could see for themselves if their program functioned and

whether the results were impressive or not. Thus, students received clear

and immediate feedback without having to depend on the teacher's

judgment. Interestingly, one negative consequence of this shift in the

standard students used for judging their work was they were often not too

interested in their teacher's advice on how to make the structure of a

program more elegant or efficient. Idiosyncratic ways of doing things,

which might be dysfunctional in the long run to the student's programming

skill, were accepted as unproblematic by students, even though their

teachers might try to point out ways which were better.

Mr. Brice: I have a kid named Jim Chiu, whose father is at the

university . . . Jim has his own brand of looping, which is

very unique to him. When he helps other students it doesn't

mesh into their programs very well. So, I kind of discourage

other kids from accepting, point blank, his solutions to a

problem . . . Occasionally I have to say, "Jim, don't help

these people anymore, because you're not teaching them the way

I would like them to be taught . . ." If they were in computer

science 2 I would be able to explain it to them, but right now

they think, "If it works, it works." They don't see why it

would be nice if it had a nice running pattern to it. As long

as it works, they figure it's good.

In fact, the acid test of whether or nct a program would work was

applied not only to students' efforts but also to the teachers' . Thus,

the teachers' skill in solving the problems students brought to them was

constantly on trial. If a program would not run after a student followed

a teacher's advice it was clear that the advice was deficient in some

regard.

18

In cases where the teacher was knowledgeable, a very clear sense of

colleagueship arose between students and the teacher. This kind of

relationship was perhaps most evident between Mr. Brice and his students

and appeared to be felt by teacher and student alike. Speaking about one

of the computer hobbyists mentioned about, Mr. Brice said:

I have a student . . . who is very talented in programming. If

I had any problems or challenges I could give them to him and

he could work them out. Between the two of us one would come up

with a solution for it.

Students' remarks about Mr. Brice also reflect this sense of

colleagueship and mutual exploration of their subject.

I: Compared to other classes, how important is the teacher

in helping you learn in computer science?

Sarah: . . . When they share with you what they are learning it's

important. He shares what we're learning because he learns from

us too. We depend on him but he learns from us. Other teachers

know everything. You can't argue with them. About dates, for

example, they know! Mr. Brice is like "I don't know. I'll look

in the book." Then if you're wrong, you're wrong. He listens to

what you have to say.

The contrast between the teacher's role as a distant repository of

authoritative information in the classroom and as a coach or skilled

collaborator in the lab was apparent in all of the computer science

classes observed. However, there were clear variations on this theme

which depended heavily on the teacher's level of skill as a pedagogue,

disciplinarian, and programmer. For example, althouqh Mr. Davidson knew

quite a bit about many aspects of programming, he had great difficult

controlling the students, especially in the classroom. He greatly

19

preferred teaching evening classes at a local community college and

conducting a consulting business -- both settings in which his demands

for quiet attentiveness were more likely to be met. The high levels of

tension and disrespect apparent in his classrooms were nct conducive to

the development of an easy colleagueship in the lab. Mr. Davidson often

offered individualized assistance to students in the lab. However, he was

sometimes prone to withdraw from them, even sitting out in the classroom

catching up on paper work, including the grading of tests. In fact, on

several days during which his class was observed working in the lab, Mr.

Davidson spoke to no more than two or three students during the entire

period, except for making an announcement at the beginning that students

should go to the lab to work on programs.

In contrast, a number of other teachers' computer skills were too

weak for them to consistently provide useful guidance when students faced

difficult programming problems in the lab. This was hardly surprising

since these teachers had been pressed into service in spite of the fact

that they had little background in computer science because teachers were

needed. A declining student population and a tight budget meant that

rather than hiring new teachers with strong computer skills, Whitmore

tended to use faculty from the math or science departments to teach

computer science. Most of these individuals did not meet the district

standards for certification as computer science teachers and their skills

were often not adequate to the challenge of solving unexpected

programming problems. One of these teachers said emphatically during an

interview, "I hate computers and I hate not being able to help the

students." Students were well aware of this lack of programming skill,

using words like "quack" to describe such teachers.

20

One strategy for handling the dilemma of teaching something they

really did not know very well was for teachers to spend a higher

proportion of their time in the classroom, where, as has already been

discussed, their lack of a strong working knowledge of programming was

not such a handicap. Others avoided the lab in more unconventional ways,

going on occasion as far as showing slides of a summer trip to far flung

parts of the United States. Although students' lack of respect for such

teachers was evident in interviews, they were generally reasonably

compliant in the classroom which allowed the teachers to play out a

fairly traditional role there. Typically such teachers adopted a more

collegial manner in the lab. However, they were not dependably able to

solve relatively straightforward problems which the better students could

often handle easily.

Linda shows Mr. Erie the listing of her program and Mr. Erie

says, "Well it looks good to me; I don't know why it isn't

working." He walks away. Mark (an average student) leans over

to look at Linda's program. He points to one thing that is

evidently wrong. Linda makes a change and then runs the program

She says to Mr. Erie, "Hey, it works now."

Students reacted negatively to the teachers being frequently unable

to solve routine problems, thus suggesting that although they valued the

sense of learning together with the teacher they experienced in the lab

they, quite justifiably, desired a teacher who could act as a

knowledgable guide or skilled colleague in the joint search for solutions

rather than as a relatively uninformed peer.

A Changed Relationship With Peers

One factor which undoubtedly contributed to the shift in the

relationship between students and teachers as they moved from the

21

classroom to the lab is that teachers did not enforce as many rules

restricting students' freedom in the lab as they did in the classroom.

In the classroom setting, where the student are an audience, it is

distracting, even disruptive, for students to leave their seats or talk

among themselves. Such behaviors make it hard for others to see and hear

as they need to in order to follow the teacher's lesson. Teachers

recognize this and use their authority to prevent or at least minimize

these behaviors. In sharp contrast, the teachers' work in the lab,

providing assistance to individuals who need it, is not likely to be

hampered by other students leaving their seats or talking. Thus all of

the computer science teachers appeared more tolerant of such behaviors

in the lab setting, mitigating the distinction between teachers, who can

move and speak as they please, and students who cannot.

The easing of such restrictions was clearly noted by students, who

enjoyed the comparative freedom of the lab. Many took advantage of it to

do a considerable amount of socializing. For boys, this often meant

discussing sports. For girls, this was more likely to entail talking

about other students, both male and female, and family members. However,

students also took advantage of their freedom to move about and talk with

others to obtain help with their work. In fact, when asked whether

students helping behavior differed in computer science compared to other

classes over three-quarters of the students said that students in

computer science helped their peers more than in other classes. Students

found this a very positive feature of working in the computer science

lab, often making enthusiastic comments about it like the one below:

Interviewer: What is the best thing about taking computer

science?

22

Carol: The students help each other. It's like teamwork. In

other classes we don't get to do that . . . People have fun.

They help each other out and I think that's great!

Many of the students explicitly linked the comparatively high rate of

helping to the unusual degree of freedom in the lab to talk c. move about

with comments like:

Rich: They help each other more because they have the freedom

to talk .

Interviewer: More than in other classes like English or

geometry?

Ned: Yeah, because in most of the other classes they frown on

people talking to each other. The teachers want total silence.

Of course, the fact that students were free to move and talk in a

way that made it possible for them to get help from other students

without resorting to subterfuge and breaking class rules does not mean

that they would necessarily do so. In fact, a small number of students

chose to work in an almost completely solitary fashion. Yet the large

majority did seek and receive help from their peers frequently and seemed

to feel quite positively about it. A number of factors seemed to be

conducive to this development. First, it was a clear fact of life in the

computer science lab that the teacher was often busy with other students.

Thus, when the need for help arose students often had to wait quite a

while if they insisted on making the teacher their only source of advice.

Seeking help from a peer was often a very efficient way to proceed.

Ron: There should be more than one Mr. Brice. There should be

two or three of him. He's always running around to a different

person helping him out. He can't always get to a person (who

23

needs help) . . . But if the person beside you knows what he's

doing, it's all right.

Second, most students were sufficiently interested in their programs to

want to get help when they were stuck rather than using the teacher's

inability to help them immediately as an excuse for doing nothing or

socializing for long periods of time. The words of one student clearly

convey this widely shared feeling.

You really have ambition to work in there (computer science).

In other classes you just do what you have to do, but in here

you want to make everything be.ter. You don't just want to

pass. You want to get an A+ on everything.

In most classrooms one major disadvantage of turning to peers rather

than the teacher for help is that it is often hard to know how much

credence to give their advice. For example, a peer can misspell a word,

give one the incorrect formula for the area of a circle, or give bad

advice on the organization of an essay. The student who needs help is

often not in a good position to evaluate the quality of the advice

received. However, in computer science students used a quick and

efficient mechanism to evaluate advice on programming -- to try it and

see how it worked.

There were two common patterns of peer help, reciprocal help between

friends and help given by unusually knowledgeable students to a wide

vdriety of others. First, it was common for friends or acquaintances to

help each other, often as part of a reciprocal relationship in which help

was sometimes given and sometimes received. One boy ans;.ered a question

about which students work together in the following way.

People who have stuff in common work together. Me, Dick, Bill,

and Don are all athletes. We're all interested in football and

24

baseball and we're always talking about everything. We just

work together. And John too. Renata I've never worked with.

Tonya, only a little bit.

Since patterns of social interaction within the school were heavily

influenced by race and gender, such exchanges of assistance typically,

though not always, occurred between students of the same sex and/or race.

Often the giving and receiving of help was embedded in an on-going

interaction which rapidly switched back and forth between causal

socializing and a more task-oriented focus.

Bill, who is white, is working on a game program. He asks Mark,

who is also white, to help him finish it. They are joined by

Doug and Martin, both of whom are black. Part of the time the

boys collaborate on the program, often yelling loudly about

whose statements are right. (In general this is good-natured

with the students kidding each other about the particular way

they go about solving programming problems.) They also discuss

the dance that is scheduled for tonight and football.

A number of classes contained students known as "wizards" who were

widely recognized as being unusually talented or experienced in computer

programming. Such students, invariably male and usually white, often

provided a great deal of assistance to students who knew less than they

did. In many cases there seemed to be a tacit exchange of social

acceptance for information received. As one student put it talking about

a slightly built white male wizard:

First when we found out Ned was good, people was kind of

jealous . . . and talked about him. They got real upset just

because he knows what he's talking about. Now it's okay since

25

he's helping everybody. They thought he was going to be selfish

about it.

Another white male who talked in an interview about the consequences of

the fact that he and his friend were considered wizards said:

They ask us how to do this or what you do in this case

They ask a lot of questions . . . Some students are really

upset because we're in that class... But when they need help

they're all real nice and friendly.

Sometimes the wizard's special competence allowed an ego-gratifying

display of superiority. Such displays were not appreciated, but they were

generally tolerated as the price one had to pay for expertise.

Bill (a white "wizard") says to Don who is black, "You got a

problem" when Don's chemistry programs says that water is a

poison. Don lists his program and looks at it intently for a

few minutes. Then he turns to Bill and says, "What's the matter

here?" Bill says, "Okay. Let's see" . . . Bill starts

troubleshooting, listing out the program, typing in changes,

and the like. At one point Don tries to type something in on

his keyboard and Bill says in an irritated tone, "Hold on a

minute. Hold on a minute!" He then continues to study the

program . . . He points to one section of it and says in a

voice loud enough for the whole class to hear, "This is why.

You don't have the locate statement like you should." Don says

a bit sarcastically, "Well, sorry!" Bill replies in a cool

tone, "You have to be intellectual about it."

The "wizards" were consistently able to bolster their self-esteem by

helping others and generally did not resort to rubbing in their superior

capability. The sense of accomplishment inherent in solving the problem

26

and the admiration of their prowess by the other students normally seemed

to suffice. Of note is the fact that even less capable students often had

the gratifying experience of solving a problem that stumped a peer. No

doubt the frequency of this experience was raised by the fact that

students often helped friends who tended to be at a roughly similar

academic level. In addition, student's programs often failed to run

because some minor convention, which could be spotted even by a

relatively unskilled programmer, had been violated. As one student put

it:

Even the kid in the class who doesn't know anything knows

something others don't know. It has happened to me (and) I'm

the dumbest (in our class).

Although helping between students 'as a widespread phenomenon in the

lab, generally accepted by students and e o ers alike, there were some

norms which regulated it. Tea ners' attitude toward specific instances

of such helping varied, dcnendinq to a large extent on whether they felt

assistance was really needed. Furthermore, teachers disapproved of cases

in which more advanced students literally took over and wrote major

sections of programs for other students, rather than providing assistance

with specific problems. Students saw nothing wrong with getting help from

other students, including copying part of a program, when they were

stuck. But they objected to "biting," copying part of someone's program

without asking permission and/or acknowledging the assistance. They also

objected to students who didn't honor the unwritten rules about

reciprocity which required those who received help to return it if they

:id.

27

Roberta: Dick . . . doesn't like 3haring with Charlie because

Charlie . . just takes the examples . . . He doesn't give the

input. He just takes the output.

Occasionally friction arose when the teacher or a student felt such norms

were being violated. However, in general, peer helping interactions were

positive in tone and contributed substantially to students' enjoyment of

the lab.

These helping interactions also contributed to learning in at least

three important ways. First, a request for assistance from a peer, often

from a friend, provided substantial motivation to try to solve a problem.

Students seemed to want to avoid letting their peers down in such

situations. Thus, they generally worked fairly hard at solving problems

brought to their attention. This provided a good opportunity for

practicing their debugging skills and gaining new knowledge through

trying out ideas, consulting a manual, or the like. Second, peers seemed

to feel very free to discuss and evaluate each others' suggestions as

they worked on solving problems. Sometimes this generated heated

discussions, as indicated in the excerpt from the field notes appearing

on page 18. The process of formulating and defending their ideas seems

likely to help solidify a student's knowledge and clarify mistaken

beliefs. Furthermore, even though their relationship with the teacher in

the lab was collegial relative to the classroom, some students were

inclined to accept a teacher's advice as likely to be right until proven

otherwise. Peers' advice was often subjected to a more serious scrutiny,

which called for more thinking and consideration of alternatives since

the students felt freer to reject it. Onu student captured this sense of

freedom when discussing peer helping by saying:

28

They can help when the teacher is trying to get around. . . You

can ask questions and they'll tell you. If you don't like it

you can do it another way.

When rushed or too interested in their own programs or social

conversations to want to converse at length, students did sometimes just

allow others to copy from their programs without discussion or

explanation. However, most students seemed aware that merely letting a

friend copy was not conducive to learning and thus in the long run was

not doing their friend a favor. At least some could articulate a

conscious strategy of trying to get their peers to think. One student who

helped others a great deal explained his approach to helping with math

programs this way:

When I help another student, I don't give him the answer. I'll

write down the formula and ask him what he wanted to do

and then I'll tell him to try and figure out what is in the

formula. If they get it wrong, I'll tell them what they have to

figure out .

Finally, some students asserted that they preferred help from peers

rather than from teachers since they could understand it better coming

from someone with a level of knowledge or manner of speaking nearer their

own.

In sum, students' freedom to interact more with their peers in the

lab was a byproduct of the facL that thr teachers did not lecture there.

The individualized mode of instruction common in the lab made it

unnecessary to forbid or strictly control student interaction. Indeed,

the fact that the students' need for assistance could not be met promptly

by one teacher encouraged teachers to allow students to help each other.

Students used this freedom both to socialize and to help each other. The

29

socializing added an element of fun to their time in the lab which was

not readily available in many other classroom settings. Although many

students spent a substantial amount of time which could have been devoted

to their lab socializing, most also showed a level of interest in their

work in the lab which was not so readily apparent in the classroom. The

giving and receiving of help often appeared to be quite effective both

in encouraging students to think about what they were doing and in

creating a positive attitude about the class.

Interviewer: What's the best thing about computer science?

Donna: That it's not so strict. You learn a lot more in a

social environment with other students helping you out instead

of just the teacher. I've learned a lot from other students.

That's the best part.

A Changed Relationship Between Students and Their Work

Lab work more connected to students' career goals. Computer science

is an elective course at Whitmore. Although some students reported

enrolling in it primarily because it fit into their schedules or because

of intrinsic interest in the subject matter, the most common reason given

for enrolling in computer science was the belief that it would be of

direct use in later education or in students' careers. A large number of

students planned careers in fields as different as secretarial work,

computer programming, and architecture in which the need for various

kinds of computer skills is obvious. Many others, who were undecided

about specific careers, were nonetheless confident that a knowledge of

computers would be helpful in almost any field, as illustrated in the

following excerpt from a student interview:

Interviewer: Why did you decide to take Computer Science 1?

30

Charlie: Well, for a lot of reasons. Computers is a growing

industry and I figure if I take it now . . . I'll have a head

start on whatever I want to do later.

Students' preference for working in the lab was linked to the fact

that many of them believed that gaining experience with computers by

learning programming would ultimately be more useful to them than most

of the things they did in the classroom. However, this explanation is far

from complete. Students needed to learn the kind of information about

BASIC and PASCAL commands conveyed in the lectures if they were going to

be able to program. They clearly recognized this, as evidenced by the

fact that over 80% believed that these lectures were helpful to them in

their later lab work. As one student put it in an interview:

Students get mad when they have to go into the classroom

because they want to get on the computers . . . But when Mr.

Brice gives an assignment they're happy they was over there

because they know what to do when they get on the computers.

Yet students were often very inattentive and restive during such

lectures. In some classrooms, this restlessness sometimes progressed to

open insolence when students were supposed to be reading or engaging in

other particularly unpopular activities.

The class is extremely rowdy now, with relatively few students

reading . . . I (the observer) get hit by a flying spitball

which was apparently intended for Ernie who is sitting near me.

Mr. Davidson asks the students to be quiet saying, "There's

only five minutes left. Let's get some work done." He then

says to Ernie who is talking quietly, but audibly, "Did I ask

you to be quiet?" Ernie says, "Sorry." Five or six "sorry's"

echo through the room. Such echoing happens frequently in this

31

class. For example, a few minutes ago Mr. Davidson explained

something to a student and then said, "Do you understand? Are

you following?" and around the room I heard four or five echoes

of the same phrase . . . A male voice calls out loudly from the

far side of the room, "Close those legs!" and giggles and

laughs circulate around the room. Ernie is beet red in the face

in what appears to be an effort to control the volume of his

giggles. Mr. Davidson says repressively, "There's been a lot of

unnecessary talking today."

Such behavior was much less common in the lab.

Lab work more connected to students' interests. In the classroom

students were presented with facts to learn, much as was true in many of

their other academic classes. Although many of these facts, such as

information about the hexadecimal system, were basic to understanding how

computers actually work, students tended to find them relatively

uninteresting in comparison to prograituning in the lab as is clear from

the following excerpt from a student interview.

The teacher said at the beginning, "You're going to learn about

the computer." I was like, "I don't want to learn about the

computer. I just want to use it!"

One major attraction of lab work, compared to classroom work, was

the degree to which students could link the work to their own personal

interests and fantasies. As one student put it:

You gotta do what he says. You gotta do the program he wants

you to do, but . . . you can write things that are your

creativity . . . You can put in parts that are from you. In

other classes you don't have that freedom.

32

This freedom to "put in parts that are from you" was highly motivating

to students. For some students, generally boys, this meant creating

programs that kept track of information on sports teams or raced cars

across the screen. Reflecting traditional sex roles to a striking degree,

girls were much more likely to create programs that dealt with personal

relationships. For example, a number of girls seemed fascinated by

endless variations on a program constructed to flash their own and their

boyfriends names on the screen like the one described below.

Marta: I made this cute little thing and it asked for your

name and your boyfriend's name. Then it prints little hearts.

I did that . . . I did that and I'm so happy about it!

The kind of material covered in the classroom was less able to be

melded readily with personal non-academic concerns and fantasies. Thus,

it was far less appealing to most students. In addition, students were

motivated by the sense of freedom and control the ability to link work

in Lhe lab to their interests gave them, relatively to many other school

settings, including the computer science classroom, where they

experienced much less of a sense of control over their environment. This

feeling of control and the resultant personalization or ownership of the

product is apparent in the following excerpt from an interview with a

student.

Interviewer: Are you glad you are taking computer science 1 or

not?

Sara: I'm glad. It's fun. You can make your computer do what

you want to do. You can put what you want to put on it. You

have your own disk and your own computer. It's fun.

33

Lab Work Requires Active Experimentation Rather Than Passive Assimilation

When asked how being in the lab differed from being in the classroom

over 80% of the students spontaneously mentioned the contrast between the

passive assimilation of knowledge characteristic of the classroom and the

active involvement in learning typical of the lab. They overwhelmingly

preferred a sense of active involvement in learning. As one student put

it pithily, explaining why he liked the lab better, "You ain't got to

listen to the teacher talk." Other students complained that taking notes

on the teacher's lecture or reading the text was just plain boring. In

contrast, working on the computer to develop and debug programs was

generally seen as much more enjoyable and exciting. Comments like the

following about computer science, and most especially about the lab were

common.

Interviewer: How would you rate what you learned in computer

science compared to what you learned in other classes?

Eric: I think I learned more in computer science 'cause it was

different. Instead of just reading something out of a book and

remembering it -- that's what you normally do in other classes

-- in computer science you just work on it until you know it.

knother student expressed a similar sentiment like this:

Interviewer: How is computer science different from your other

classes?

Elsie: A lot of people are used to the chalkboard method where

the teacher writes something on the board and you just take it

from there. But this course requires you to think things out

for yourself.

interviewer: Is that difficult?

34

Elsie: When I first got here it was, but now I'm learning. I

got used to it.

One major difference between learning in the computer lab and

learning in the computer science classroom and other similar settings was

the extent to which students learn through active trial and error. More

than 85% of the students interviewed mentioned this as a distinguishing

feature of computer science, and the lab was clearly the setting in which

this kind of activity occurred. Students fundamental task in the lab was

to figure out how to make their programs perform to accomplish certain

goals. Even fairly simple programs often failed to work on the first try.

Not surprising, more complicated ones generally required considerable

debugging. Once programs worked students were prone to try to improve or

elaborate them, thus creating another cycle of improvement through trial

and error.

Charlie: I like the satisfaction of doing something that I

feel was the best I could do . . . I can make it (the program)

look nicer or do something more -- put more extras on it .

I enjoy that.

This process of trial and error required active engagement on the

part of the students which tapped their intellect and imagination in a

way they felt other classes generally did not. Student interviews were

filled with favorable comments such as the following:

It's different from every other class. (In other classes) you

just sit at a desk and you have to do as you are told. Here you

do what you are told but you can create things.

The class is fun, but it requires a lot of thinking. I would

encourage (others) to take it.

35

I learn new things everyday. I love it. It's a challenge and I

love challenges.

One might expect that working by trial and error would be

discouraging to students, especially those who faced error very

frequently. However, generally speaking, this did not seem to be the case

for a number of reasons. First, it was clear to students that the fact

that a program did not work the first time was not some kind of fatal

inditement of their skill. Students understood that debugging was a

normal part of the creation of a program. Students could observe for

themselves that everyone, including the teacher and any "wizards" in

their classrooms, often had to struggle to create programs that

functioned as they were intended. Second students generally discovered

their own errors when they tried out their programs rather than having

someone else point them out to them. This, combined with the fact that

errors generally did not have negative consequences for students' grades,

made errors a signal of a problem to be dealt with rather than an

embarrassing failure.

Ned: On the computer if you mess up you can always go back and

change a line or fix it. In other classes (like art) once

you're done and they grade it if it's wrong it's wrong .

You might be able to figure out what you did wrong, but it's

too late after that. But in computer science you can every so

often run the program and see what's wrong and fix it before

the teacher grades it. So trial and error is pretty important.

It helps you learn what you're doing wrong. It helps you figure

out how to fix things up and how to make them . . . right.

Since students were responsible for marshalling the resources

necessary to fix their errors, for many students programming was

36

experienced as a series of personal challenges. This sense of active

personal challenge was very motivating to many students.

Sam: They (students) know they are not doing it (programming)

for the teacher really. They are doing it for themselves,

seeing the effects of what they put in come back out on the

screen and work. They're doing it . . . to try to better

themselves. Each program gets better and better.

If students had difficulty in meeting these challenges by themselves,

help was readily available, from peers if not always from the teacher,

so few students remained stuck on a particular problem for so long that

it became really frustrating or created a debilitating sense of failure.

Conclusions

Students' preze-_nce for working with computers in the lab rather

than learning aout them in the classroom was clear. There is no doubt

that some c' the material covered in the classroom lectures was crucial

in helping students achieve their goals in the lab. However, in general,

work in that environment was perceived as boring. Students were often

inattentive and showed relatively little interest in or enthusiasm for

their work in the classroom setting. In contrast, the large majority of

the students enjoyed their time in the lab and evidenced much more

involvement in their work there. This increase in enjoyment and

motivation was due to many factors. As in the GPTutor classes, relations

between students and teachers became much more collegial when the

students worked on the computers. In sharp contrast to the GPTutor

classes, students interacted with each other much more when in the lab

than during whole class instruction. Although much of this interaction

was purely social, and hence potentially distracting, task-oriented

helping interactions were also very common. The freedom to give and

37

receive help from others served many positive functions, as might be

expected from the substantial literature on peer helping. In the lab

students were more able to link their work to their own interests and

goals than in the classroom which was also very motivating. In addition,

the sense of personal challenge created by the active involvement in

trial and error learning created an atmosphere conducive to active

thinking rather than passive assimilation of knowledge.

38

References

Becker, H. J. (1986) . Instructional uses of school computers. Reports

from the 1985 National Survey, Issue 1, Center for Social Organization

of Schools, The Johns Hopkins University, Baltimore, MD.

Bogdan, R. C., & Biklen, S. K. (1982). Qualitative research for

education: An introduction to theory and methods. New York: Allyn &

Bacon.

Buckley, W. M. (1988) . Computers failing as teaching aids: Heralded

revolution falls short due to lack of machines. Wall Street Journal,

p. 17.

Goetz, J. P., & LeCompte, M. D. (1984). Ethnography and aualitative

design in education research. Orlando, FL: Academic Press.

Hativa, N., Swisa, S., & Lesgold, A. (1989, March). Competition in

traditional CAI: Motivational, sociological and instructional-design

issues. In A. Di Sessa (Chair), Computers and classroom social

processes. Symposium conducted at the meeting of the American

Educational Research Association, San Francisco.

Miles, M. B., & Huberman, A. M. (1984). Qualitative data analysis: A

sourcebook of new methods. Beverly Hills, CA: Sage.

Olson, S. (1976) . Ideas and data: Process and practice of social

research. Homewood, IL: The Dorsey Press.

Quality Education Data (1984, January). Microcomputer data. Unpublished

raw data presented to the Naval Materials Council, Dallas, TX.

Schofield, J. W. (1985) . The impact of an intelligent computer-based

tutor on classroom social orocesses: An ethnoaraDhic study.

Unpublished manuscript, University of Pittsburgh, Learning Research

and Development Center, Pittsburgh, PA.

39

Schofield, J. W., Evans-Rhodes, D., & Huber, B. R. (1989). Artificial

intelliaence in the classroom: The irOact of a comouter-based tutor

on teachers and students (Technical Report No. 3) . Pittsburgh:

University of Pittsburgh, Learning Research and Development Center.

Schofield, J. W., Evans-Rhodes, D., & Huber, B. R. (1990). Artificial

intelligence in the classroom: The impact of a computer-based tutor

on teachers and students. Social Science Comouter Review, 8, 24-41.

Sheingold, K., Kane, J., & Endreweit, M. (1983). Microcomputer use in

schools: Developing a research agenda. Harvard Educational Review,

53, 412-432.

Sheingold, K., Martin, M. W., & Endreweit, M. E. (1987). Preparing urban

teachers for the technological future. In R. D. Pea & K. Sheingold

(Eds.), Mirrors of minds: Patterns of experience in educational

comoutina (pp. 67-85). Norwood, NJ: Ablex.

Smith, L. M., & Geoffrey, W. (1968). The comolexities of an urban

classroom. New York: Holt, Rinehart, & Winston.

Strauss, A. (1987). Qualitative analysis for social scientists.

Cambridge: Cambridge University Press.

Webb, E. J., Campbell, D. T., Schwartz, R. D., & Sechrest, L. (1966).

Unobtrusive measures: Nonreactive research in the social sciences.

Chicago: Rand-McNally.

41

University of Pittsburgh/Schofield

ERIC Facility-Acquisitions Mr. Lee Gladwin
4350 East-West Hwy., Suite 1100 305 Davis Avenue
Bethesda, MD 20814-4475 Leesburg, VA 22075

Dr. Debra Evans Mr. Harold Goldstein
Applied Science Associates, Inc. University of DC
P. 0. Box 1072 Department Civil Engineering
Butler, PA 16003 Bldg. 42, Room 112

4200 Connecticut Avenue, N.W.
Dr. Beatrice J. Farr Washington, DC 20008
Army Research Institute
PERI-IC Dr. Sherrie Gott
5001 Eisenhower Avenue AFHRL/MOMJ
Alexandria, VA 22333 Brooks AFB, TX 78235-5601

Dr. Elizabeth Fennema Dr. T. Govindaraj
Curriculum and Instruction Georgia Institute of
University of Wisconsin Technology
225 North Mills Street School of Industrial
Madison, WI 53706 and Systems Engineering

Atlanta, GA 30332-0205
Prof. Donald Fitzgerald
University of New England Dr. Dik Gregory
Department of Psychology Admiralty Research
Armidale, New South Wales 2351 Establishment/AXB
AUSTRALIA Queens Road

Teddington
Dr. Michael Flaningam Middlesex, ENGLAND TW110LN
Code 52
NPRDC Michael Habon
San Diego, CA 92152-6800 DORNIER GMBH

P.O. Box 1420
Dr. J. D. Fletcher D-7990 Friedrichshafen 1
Institute for Defense Analyses WEST GERMANY
1801 N. Beauregard St.
Alexandria, VA 22311 Dr. Henry M. Halff

Halff Resources, Inc.
Dr. Barbara A. Fox 4918 33rd Road, North
University of Colorado Arlington, VA 22207
Department of Linguistics
Boulder, CO 80309 Mr. H. Hamburger

Department of Computer Science
Department of Humanities and George Mason University

Social Sciences Fairfax, VA 22030
Harvey Mudd College
Claremont, CA 91711 Dr. Cheryl Hamel

NTSC, Code 711
Dr. Philip Gillis Orlando, FL 32813
Army Research Institute
PERI-II
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

43

University of Pittsburgh/Schofield

Dr. William R. Murray Mr. William A. Rizzo

FMC Corporation Code 71

Central Engineering Labs Naval Training Systems Center

1205 Coleman Avenue Orlando, FL 32813

Box 580
Santa Clara, CA 95052 Dr. Linda G. Roberts

Science, Education, and

Dr. Harold F. O'Neil, Jr. Transportation Program

School of Education - WPH 801 Office of Technology Assessment

Department of Educational Congress of the United States

Psychology & Technology Washington, DC 20510

University of Southern California

Los Angeles, CA 90089-0031 Dr. Janet W. Schofield
816 LRDC Building

Office of Naval Research, University of Pittsburgh

Code 1142CS 3939 O'Hara Street

800 N. Quincy Street Pittsburgh, PA 15260

Arlington, VA 22217-5000
(6 Copies) Dr. Judith W. Segal

OERI

Dr. Judith Orasanu 555 New Jersey Ave., NW

Basic Research Office Washington, DC 20208

Army Research Institute
5001 Eisenhower Avenue Dr. Robert J. Seidel

Alexandria, VA 22333 US Army Research Institute
5001 Eisenhower Ave.

Dr. Nancy N. Perry Alexandria, VA 22333

Naval Education and Training
Program Support Activity Dr. Randall Shumaker

Code-047 Naval Research Laboratory

Building 2435 Code 5510

Pensacola, FL 32509-5000 4555 Overlook Avenue, S.W.
Washington, DC 20375-5000

Dept. of Administrative Sciences
Code 54 Dr. Derek Sleeman

Naval Postgraduate School Computing Science Department

Monterey, CA 93943-5026 The University
Aberdeen AB9 2FX

Dr. Joseph Psotka Scotland

ATTN: PERI-IC UNITED KINGDOM

Army Research Institute

5001 Eisenhower Ave. Ms. Gail K. Slemon

Alexandria, VA 22333-5600 LOGICON, Inc.
P.O. Box 85158

Dr. J. Wesley Regian San Diego, CA 92138-5158

AFHRL/IDI
Brooks AFB, TX 78235 Dr. Alfred F. Smode

Code 7A

Dr. Charles M. Reigeluth Research and Development Dept.

330 Huntington Hall Naval Training Systems Center

Syracuse University Orlando, FL 32813-7100

Syracuse, NY 13244

44

University of Pittsburgh/Schofield

Dr. Elliot Soloway Dr. Douglas Wetzel
Yale University Code 51
Computer Science Department Navy Personnel R&D Center
P.O. Box 2158 San Diego, CA 92152-6800
New Haven, CT 06520

Dr. Barbara White
Linda B. Sorisio BBN Laboratories
IBM-Los Angeles Scientific Center 10 Moulton Street
11601 Wilshire Blvd., 4th Floor Cambridge, MA 02238
Los Angeles, CA 90025

Dr. David Wilkins
Dr. Marian Stearns University of Illinois
SRI International Department of Computer Science
333 Ravenswood Ave. 1304 West Springfield Avenue
Room B-5124 Urbana, IL 61801
Menlo Park, CA 94025

Dr. Marsha R. Williams
Dr. David E. Stone Applic. of Advanced Technologies
Computer Teaching Corporation National Science Foundation
1713 South Neil Street SEE/MDRISE
Urbana, IL 61820 1800 G Street, N.W., Room 635-A

Washington, DC 20550
Dr. Perry W. Thorndyke
FMC Corporation Dr. Robert A. Wisher
Central Engineering Labs U.S. Army Institute for the
1205 Coleman Avenue, Box 580 Behavioral and Social Sciences
Santa Clara, CA 95052 5001 Eisenhower Avenue

Alexandria, VA 22333-5600
Dr. Douglas Towne
Behavioral Technology Labs Dr. Merlin C. Wittrock
University of Southern California Graduate School of Education
1845 S. Elena Ave. UCLA
Redondo Beach, CA 90277 Los Angeles, CA 90024

Dr. Frank L. Vicino Dr. Wallace Wulfeck, Ill
Navy Personnel R&D Center Navy Personnel R&D Center
San Diego, CA 92152-6800 Code 51

San Diego, CA 92152-6800
Dr. Jerry Vogt
Navy Personnel R&D Center Dr. Masoud Yazdani
Code 51 Dept. of Computer Science
San Diego, CA 92152-6800 University of Exeter

Prince of Wales Road
Dr. Thomas A. Warm Exeter EX44PT
Coast Guard Institute ENGLAND
P. 0. Substation 18
Oklahoma City, OK 73169 Dr. Joseph L. Young

National Science Foundation
Dr. Beth Warren Room 320
BBN Laboratories, Inc. 1800 G Street, N.W.
10 Moulton Street Washington, DC 20550
Cambridge, MA 02238

4

' 45

University of Pittsburgh/Schofield

Dr. Uri Zernik
General Electric:
Research & Development Center
Artificial Intelligence Program
PO Box 8
Schenectady, NY 12301

